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Abstract

In this paper, a two-dimensional numerical study on the levitation force induced by pressure radiation in a gas

squeeze film is carried out. In particular, the validity of the pressure release boundary condition and the isothermal

assumptions are examined by a CFD scheme. The results are compared to a one-dimensional analytical solution,

leading to findings on the role and accuracy of commonly used boundary conditions. It appears that when taking into

consideration the energy leakage near the edges of the levitated object, the levitation force due to the squeeze film could

be smaller by up to 50% in comparison with the analytical, one-dimensional solution that assumes pressure release

conditions.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In mechanical systems where a gas squeeze-film is generated, the forces induced by the film may have a crucial

influence on the dynamic performance of the systems (Bao, 2000; Gross, 1962; Bhushan, 1999). Such an influence is not

restricted to energy dissipation, i.e. to damping effects and to drag forces, but it also affects pressure radiation which

creates a constant levitation force and a spring-like behavior, in this case. Mechanical systems where a gas is present

between two close surfaces exhibiting high frequency normal vibrations are commonly found in micromechanical

devices (Bao, 2000) and in levitation systems (Salbu, 1964; Hashimoto et al., 1996; Nomura et al., 2002; Minikes and

Bucher, 2003).

While the damping force and drag force exerted by the squeeze film are dealt with in the literature (Bao, 2000; Gross,

1962; Bhushan, 1999), the levitation force induced by radiation pressure in the squeeze film is rarely considered.

Radiation pressure becomes significant for small scale devices such as in micromechanical (MEMS) applications.

Normal oscillating excitation between two planar surfaces can create forces to the extent that second-order effects

become significant, and the generated gas film has a time-averaged pressure larger than the surrounding. Under fast

vibrations, the viscous flow cannot be instantaneously squeezed; consequently, compressibility forces reach equilibrium

with viscous forces.
e front matter r 2006 Elsevier Ltd. All rights reserved.

uidstructs.2006.02.004

ing author. Tel.: 972 4 8293153; fax: 972 4 8295711.

ess: bucher@technion.ac.il (I. Bucher).

www.elsevier.com/locate/jfs
dx.doi.org/10.1016/j.jfluidstructs.2006.02.004
mailto:bucher@technion.ac.il


ARTICLE IN PRESS
A. Minikes, I. Bucher / Journal of Fluids and Structures 22 (2006) 713–719714
The existing analytical approaches for the levitation phenomenon are based on either conventional acoustic

radiation, where the fluid is assumed inviscid or on a variant of the Reynolds equation that incorporates viscous effects.

Hashimoto et al. (1996) provided a simplified mathematical formulation by which the levitation force is based on the

acoustic radiation theory; Chu and Apfel (1982) have demonstrated this effect in a simplified, one-dimensional case.

Nomura et al. (2002), presented a numerical analysis of a two-dimensional axisymmetric pressure field, solving the

continuity and momentum equations for adiabatic conditions. The disagreement between the numerical results

(Nomura et al., 2002) and the analytical solution (Hashimoto et al., 1996) was attributed to energy leakage in the

peripheries of the levitated object; not accounted for by the one-dimensional model.

The present work, examines the validity of the Reynolds equation for the prediction of the squeeze film levitation. A

two-dimensional CFD analysis, similar to that presented by Nomura et al. (2002), was carried out, taking into account

not only the influence of the near-field radiation pressure in the peripheries of the levitated object but also the influence

of the temperature filed. The numerical results are compared with an analytical second-order solution of the Reynolds

equation derived by means of perturbation technique with pressure release boundary conditions.
2. Problem description

Consider the case illustrated in Fig. 1 where a symmetric half of a flat wall having a width L and a much larger length,

is placed at a mean distance Z from a flat vibrating plane. The distance Z is of order 10�4m and is two orders of

magnitude smaller than the width L. The driving surface oscillates in the normal direction at a frequency o (order of

105 rad/s) and amplitude eZ (e51)U The vibrating surface squeezes the gas that occupies the clearance between the

planes, generating a time averaged pressure higher than the surrounding.

The gas flow in a cross section (a two-dimensional flow) is governed by the compressible and viscous Navier-Stokes

equations. Introducing the following dimensionless variables where the dimensional variables are denoted by a tilde:

x ¼
~x

L
; y ¼

~y

Z
; t ¼ o~t; u ¼

~u

c0
; v ¼

~v

c0
; m ¼

~m
m0

,

r ¼
~r
r0
; T ¼

~T

T0
; p ¼

~p

r0c20
; e ¼

~e

c20
;

here, x and y are the space coordinates, t represents time, u and v are the flow velocities in the x and y direction,

respectively. The gas viscosity and density are denoted by m and r, respectively, T is temperature, p stands for pressure

and e the gas internal energy state. The subscript 0 in the variables designates the quantities at initial conditions of the

gas which was chosen to be standard atmospheric air, and c0 stands for the speed of sound. The Navier-Stokes

equations in Cartesian coordinates can be written in the compact dimensionless form (Tannehill et al., 1997):
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Fig. 1. Schematic layout of half of the symmetric of the problem.
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where U, E, G, F and W are the vectors
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>>>;
; E ¼

1

kL

ru

ru2 þ p

ruv

Et þ pð Þu

8>>>><
>>>>:

9>>>>=
>>>>;
; G ¼

1

kL

0

txx

txy

utxx þ vtxy þ qx

8>>>><
>>>>:

9>>>>=
>>>>;
;

F ¼
1

kZ

rv

rvu

rv2 þ p

Et þ pð Þv

8>>>><
>>>>:

9>>>>=
>>>>;
; W ¼

1
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in these vectors, k ¼ o=c0 is the wave number and Et represents the total energy density, Et ¼ r½eþ ðu2 þ v2Þ=2�. The
components of the shear-stress tensor and heat flux vector in dimensionless form are given by
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The Reynolds number is Rez ¼ r0c0Z=m0 and Sutherland’s formulae for viscosity and thermal conductivity (k) were
applied: m ¼ ðT0 þ 110:4ÞT3=2=ðT0T þ 110:4Þ, k ¼ Cpm=Pr, where Cp is the specific heat at constant pressure, and Pr is

the Prandtl number (taken as constant). Since the problem involves relatively low temperatures (room temperatures),

air is considered a calorically perfect gas and a specific heat ratio of g ¼ 1:4 is taken for the following relations:

e ¼ T=gðg� 1Þ; p ¼ rT=g. The time averaged force (W) per unit length acting on the upper wall is expressed by

integrating the normal component of the stress tensor along the wall width and averaging over a time period at a steady

state conditions:

W ¼
1
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where W is normalized by r0c20L and n̂ is an outward unit vector normal to the surface. The x derivative vanishes due

the symmetry in the problem. Taking into consideration the ambient pressure outside the wall, the time-averaged

levitation force becomes
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dx dt. (4)
2.1. Boundary conditions—numerical model

In order to solve the Navier-Stokes equations subjected to initial and boundary conditions, a numerical computation

method has been applied. A half of the symmetric integration domain is shown schematically in Fig. 1. The upper and

lower rectangles represent the levitated plate and the vibrating surface, respectively. In practice, the levitated plate

vibrates in response to the pressure fluctuations in the gas film. According to experimental observations, obtained by

Nomura et al. (2002) and by Minikes and Bucher (2003), these vibrations are two to three orders of magnitude smaller

than the vibration amplitude of the driving surface; therefore, the levitated plate can be adequately modeled as a

stationary wall. Utilizing a no-slip wall boundary condition along the boundaries a–b and b–c where the flow velocities

vanish, gives: uja�b ¼ ujb�c ¼ 0; vja�b ¼ vjb�c ¼ 0.

The small amplitude vibrations of the exciting surface can be represented as a kinematical boundary-constraint

hence, the flow velocities on the boundaries of the driving surface vibrating harmonically are: ujf�g ¼ ujg�h ¼ 0,

vjf�g ¼ 0, vjg�h ¼ V � sinðtÞ. Where V ¼ eoZ=c0 is the dimensionless velocity amplitude.

On the outer boundary lines of the integration domain, lines c–d–e–f, nonreflecting boundary conditions were

adopted according to Thompson (1987) and Poinsot and Lele (1992). The location of these boundaries was determined

by an iteration process in which the boundaries are placed far enough from the gas film to neglect the shear-stresses and

heat flux on these boundaries, and to prevent numerical oscillations of the solution. For the sake of improving the
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accuracy of the scheme, a logarithmic grid stretching of the x-axis was carried out as illustrated schematically in Fig. 1.

The transformation forms an evenly spaced computational plane to the physical plane was accomplished through the

logarithmic stretching used by Holst (1977). This time-dependent system was solved by employing an explicit numerical

computation method similar to that employed by Nomura et al. (2002): an explicit MacCormak finite difference scheme

suggested by Turkel (1980) with fourth-order accuracy in space and second-order accuracy in time. The computational

domain is typically divided into 60 grids along the y-axis and 400 grids along the x-axis. The computational grid was

refined until a difference smaller than 1% between two subsequent solutions of the levitation force was observed. The

stability of the scheme was ensured by satisfying the Courant-Friedrichs-Lewy condition for numerical convergence

(Tannehill et al., 1997).

2.2. Approximate analytical solution

The Reynolds equations are derived by performing an order-of-magnitude analysis on the governing equations. This

analysis reveals that the pressure gradient in the normal direction can be neglected (Langlois, 1962). Integrating the

continuity equation across the film thickness and substituting the velocity profile into the momentum equation in the x

direction results in the governing one-dimensional, time-dependent Reynolds equation for laminar, Newtonian,

isothermal (the isothermal assumption will be discussed later on), and compressible thin film flow (Langlois, 1962):

q
qx

z3p
qp

qx

� �
¼ s

q
qt
ðpzÞ; pðx; t ¼ 0Þ ¼ 0; pðx ¼ �0:5; tÞ ¼ 0, (5)

where z ¼ ~z=Z, is the normalized mean clearance between the surfaces, and the dimensionless squeeze number is defined

as: s ¼ ð12om0LÞ=ðr0c20Z2Þ; pressure release conditions were used at the edges.

When solving the Reynolds equation for the pressure radiation in the film, a second-order solution, accounting for

nonlinear effects should be considered. It is assumed that the deviation from the ambient pressure is expanded up to

order e2 terms as follows:

pðx; tÞ ¼ 1þ ePAðx; tÞ þ e2PBðx; tÞ þ Oðe3Þ. (6)

Substituting this equation together with the prescribed time variation of the clearance between the surfaces HðtÞ ¼

1þ e cosðtÞ into Eq. (6) creates linear differential equations that can be solved (Minikes et al., 2004) , to obtain the

pressure and consequently the levitation force:
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1
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g
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5e2
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cosðbÞ þ coshðbÞ

� �
; (7)

here b ¼
ffiffiffiffiffiffiffiffi
s=2

p
.

Eq. (7) shows that the normalized time averaged levitation force is proportional to the square of the excitation

amplitude for a given squeeze number. For vibration amplitudes, up to about one third of the mean clearance (ep0:3),
this second-order perturbation solution is in good agreement with a numerical solution of the Reynolds equation

(Minikes et al., 2004).
3. Results

The assumptions of pressure release on the boundaries and an isothermal behavior of the film are necessary for

deriving the Reynolds equation and in order to obtain the solution for the levitation. The comparisons presented in this

section focus on examining the adequacy of these assumptions.

3.1. The assumption of pressure release boundary condition

The influence of the surface dimensions on the levitation force was examined in order to assess their influence on the

correct choice of boundary conditions. When the driving surface is larger than the levitated pressure the assumption of

pressure release at the boundaries should be considered with caution. As mentioned before, the Reynolds equation does

not incorporate pressure gradients in the normal direction to the vibrating surfaces (y-axis); therefore, near-field

acoustic pressure created by the exposed portion of the driving surface is not accounted. The eddy acoustic streaming

near the boundaries is varying periodically with time, influencing the pressure gradients in the squeezed gas layer. Fig. 2

presents some numerical results of the levitation force, computed with the numerical CFD scheme as function of the
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excitation amplitude for different levitated surface sizes, L ¼ 10, 15, 20 (or squeeze numbers s ¼ 11.14, 25.05, 44.54,

respectively). The excitation amplitudes did not exceed ep0:0557, limiting the local error to 5.6%. The triangles in

Fig. 2 indicate the levitation force when both surfaces are of the same size (line a–b is equal to line g–h in Fig. 1) and the

circles indicate the levitation force when the driving surface (line g–h in Fig. 1) is larger by 20% than the levitated
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surface (line a–b in Fig. 1). The physical values of parameters used in the numerical computations are:

o ¼ 2p � 20� 103 rad=s, m0 ¼ 1:8462� 10�5 kg=ms, Z ¼ 100mm, r ¼ 1:1774 ks=m3, T0 ¼ 300K, Pr ¼ 0:722.
The numerical results appearing in Fig. 2 suggest that for low squeeze numbers the levitation force is significantly

influenced by the near-field acoustic pressure at the boundaries. It shows that for s ¼ 11:14 (Fig. 2(a)) the levitation

force may drop up to 50% when the vibrating surface is larger than the levitated surface. In such cases, assuming

pressure release ðp ¼ 1Þ at the boundaries is inadequate. As the squeeze number increases this influence decreases as can

be seen in Fig. 2(b) and (c). This behavior may be explained by examining the pressure gradients in the film. The

pressure gradients in the gas layer increase with the increase of squeeze number. The larger the pressure gradients in the

film are, the less sensitive they are to small variations in the pressure on the boundaries.

As the Reynolds equation was solved analytically under the assumption of pressure release at the boundaries, a

comparison of the analytical solution of Eq. (7) with the numerical results could be considered adequate, only for the

case of small s where the driving surface and the levitated surface are of the same width.

The analytical solutions indicated by circles and the numerical solutions that are presented by triangles, are

compared. The local error is limited by 75% as the displacement excitation amplitude was e ¼ 0:0477. The agreement

between the solutions is reasonably good when considering all the assumptions made for deriving the Reynolds

equation. At squeeze numbers higher than those presented in Fig. 3, the pressure gradients in the film increase to the

extent that a much finer grid is necessary for depicting properly the flow properties.

3.2. The assumption of isothermal behavior

The characteristic time of temperature variations across the squeezed film can be approximate by t � Z2=a �
Oð10�5 sÞ where a is the thermal diffusivity of the gas. When dealing with excitation frequencies in the range of

o � Oð105 rad=sÞ, this characteristic time is an order of magnitude shorter than that of the periodic oscillation time.

This implies that temperature dissipates in the flow significantly faster than the propagation of the flow matter; thus, the

flow field could be considered as nearly uniform across the squeezed film during each time cycle. Furthermore, since the

gas film is very thin and of low heat capacity when compared with that of the bearing surfaces, the whole fluid

occupying the space between the plates could be treated as isothermal.

It is reasonable to expect differences in the results between a model assuming isothermal behavior and a model under

an adiabatic behavior assumption. When deriving the Reynolds equation for isothermal polytropic flow

(pr�1 ¼ const:), it is possible to replace r by p to obtain Eq. (5). However, when adiabatic behavior is postulated,

the relation between the normalized pressure and density is r ¼ p1=g. In such a case, Eq. (5) will take the form

q
qx

p1=nZ3

m
qp

qx

� �
¼ s

q
qt
ðp1=nZÞ. (8)

The flow viscosity varies with temperature, therefore it is no longer constant in the field. Inspecting the results obtained

from an isothermal model, it appears that the fluctuations of the normalized pressure do not exceed 10%. In such case,

the normalized density is nearly equal to the normalized pressure (r ¼ p1/1.4Ep since p is close to 1) and Eq. (8) reduces

to the isothermal Reynolds equation, Eq. (5).

As described earlier, the temperature in the numerical model was predetermined only at the boundaries of the

surfaces, and a constant and uniform value was dictated allowing for heat flux to take place in the field. Elsewhere, the

boundaries were imposed far enough from the squeeze-film where the thermal gradients were shown to be insignificant

in the CFD analysis. Therefore, the assumption that the time-averaged temperature is nearly constant seems acceptable,

and the small fluctuations suggest that postulating an isothermal behavior for deriving the analytical solution is

adequate.
4. Conclusions

In this work, numerical and analytical solutions for the pressure radiation induced by a squeeze gas film were

examined and compared. It has been shown that the assumption of pressure release at the boundaries, implied in the

Reynolds equation, is inadequate in cases where the driving surface is sufficiently larger than the levitated surface. In

such cases, numerical computations show that the near-field acoustic pressure created by the exposed portion of the

driving surface influences the pressure gradients in the film, causing a reduction of up to 50% in the levitation force at

low squeeze numbers. This influence reduces with the increase of the squeeze number and the pressure release condition

provides satisfactory accuracy. A second-order analytical solution of the Reynolds equation has been briefly reviewed
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and it was shown to be in good agreement with a two-dimensional CFD solution taking into account viscosity and

compressibility effects. The question whether the squeezed film should be considered as isothermal or adiabatic was

discussed and numerical computations showed that the film experiences only small temperature fluctuations (about 5%)

with constant time-averaged temperature, suggesting an isothermal behavior.
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